The Crystal Structure of a New Charge-Transfer Complex of Hexamethylenetetrathiafulvalene with Triiodide, HMTTF · I₃¹⁾

Kazumasa Honda,* Midori Goto, Masayasu Kurahashi, Hiroyuki Anzai,† Madoka Токимото,† Hiroshi Bando,† and Takehiko Ishiguro†

National Chemical Laboratory for Industry, Yatabe-machi, Tsukuba-gun, Ibaraki 305

†Electrotechnical Laboratory, Sakura-mura, Niihari-gun, Ibaraki 305

(Received August 4, 1986)

Synopsis. The crystal structure of bis(trimethylene)tetrathiafulvalenium triiodide (hexamethylenetetrathiafulvalenium triiodide) has been determined. The space group is $P\bar{1}$, with a=7.973 (2), b=11.849 (3), c=14.412 (4) Å, $\alpha=82.86$ (2), $\beta=89.13$ (3), $\gamma=95.85$ (2)°, and Z=3. The crystal has intermolecular S... S contacts 3.36 and 3.37 Å shorter than the van der Waals distance of 3.7 Å.

Recent attention paid to organic charge-transfer complexes has demonstrated the possibility of their application to new electronic materials because of their large electronic anisotropy and/or conductivity. A series of complexes of bis(trimethylene)tetrathiafulvalene (hexamethylenetetrathiafulvalene²⁾; HMTTF) has been one of the candidates for organic metals since the discovery of HMTTF·TCNQ.²⁾ The present authors have attempted the electrocrystallization of HMTTF salts with I₃-, ClO₄-, and PF₆-; they have obtained single crystals of HMTTF·I₃ for the first time. Here, the crystal structure and the electrical properties will be reported.

Experimental

Black plates of HMTTF · I₃ were obtained by electrochemical oxidation (at a constant current of 1 μ A under nitrogen at 20 °C) from a 80-ml THF solution containing 0.091 mmol of HMTTF and 0.27 mmol of tetrabutylammonium triiodide.³⁾ The electrical resistivity of the single crystal was measured along the long axis (a axis) by the four-terminal method. The cell dimensions and diffraction intensities were measured on a Rigaku AFC-4 four-circle diffractometer by using graphite monochromated Mo $K\alpha$ radiation (λ = 0.71069 Å) at room temperature. 3998 independent reflec-

tions with 2θ values from 3° up to 55° ($|F_{\circ}| \ge 3\sigma$ ($|F_{\circ}|$)) were used for the analysis.

Crystal Data: $C_{12}H_{12}S_4 \cdot I_3$; FW=665.20; triclinic; space group, $P\bar{1}$; Z=3; a=7.973 (2), b=11.849 (3), c=14.412 (4) Å, α =82.86 (2), β =89.13 (3), γ =95.85 (2)°, U=1343.4 (6) ų; D_{obsd} =2.5, D_{calcd} =2.48 gcm⁻³; μ (Mo $K\alpha$)=55.10 (cm⁻¹). The structure was solved by the use of the MULTAN 78 program.⁴⁾ The structural parameters were refined by a block-diagonal least-squares method. The hydrogen atoms were placed at the calculated positions.⁵⁾ All the computations were carried out on a FACOM M-380 computer using the UNICS III system.⁶⁾ The final refinement after the absorption correction led to the R value of 0.045. The possibility of another space group, P1, was excluded because the I-I bond distance of the I_3 anion on the inversion center was unacceptably prolonged (3.40 Å).

Results and Discussion

The final atomic coordinates of the non-hydrogen atoms are given in Table 1.7) An $ORTEP^{8)}$ projection of the crystal structure along the a axis is shown in Fig. 1. The unit cell contains three HMTTF (A, B, B') and three I_3 . One HMTTF (A) and one I_3 have their centers of mass on the crystallographic inversion center. Two I_3 anions are aligned almost parallel to the c axis, and the other one is aligned almost parallel to the b axis. These two types of I_3 anions are alternately stacked along the c axis. The anisotropic temperature factors of the I_3 anion on the inversion center are quite large, indicating that the I_3 anion is probably disordered. Figure 2 shows the bond distances in the HMTTF molecules. In the case of tetrathiafulvalene (TTF) salts, 9 0 oxidation is accompanied by a lengthening of

Table 1. Fractional Atomic Coordinates (×104) and Equivalent Isotropic Thermal Parameters, with Estimated Standard Deviations in Parentheses

	х	у	z	$B_{ m eq}/{ m \AA}^2$		x	у	z	$B_{ m eq}/{ m \AA}^2$
IlA	814(2)	2451(2)	125(1)	8.67(0.05)	C5A	3192(17)	-599(12)	-1847(8)	4.6(0.4)
I2A	0(0)	0(0)	0(0)	6.94(0.05)	C6A	4001(12)	-418(8)	-2797(6)	2.5(0.2)
IIB	286(1)	1947(1)	7068(1)	3.73(0.02)	ClB	6220(12)	3848(9)	-4432(8)	3.0(0.3)
I2B	378(1)	2249(1)	5010(1)	3.14(0.02)	C2B	6773(13)	3918(10)	-2708(8)	3.4(0.3)
I3B	597(1)	2526(1)	2972(1)	3.70(0.02)	C3B	7412(16)	3979(12)	-1729(10)	4.9(0.4)
SlA	3078(3)	-306(3)	-3882(2)	3.17(0.07)	C4B	6113(19)	3119(15)	-1133(10)	6.0(0.5)
S2A	6763(3)	-41(3)	-3860(2)	3.16(0.07)	C5B	4898(16)	2553(10)	-1785(9)	4.2(0.3)
SlB	4699(4)	2896(2)	-3812(2)	3.52(0.07)	C6B	5445(14)	3134(9)	-2723(8)	3.2(0.3)
S2B	7596(3)	4615(3)	-3768(2)	3.71(0.08)	C7B	6291(12)	4000(9)	-5398(7)	2.9(0.3)
S3B	4885(4)	3249(3)	-6059(2)	3.71(0.08)	C8B	7160(13)	4591(10)	-7126(8)	3.4(0.3)
S4B	7796(3)	4965(3)	-6042(2)	3.63(0.07)	C9B	7956(18)	4979(12)	-8071(9)	4.9(0.4)
ClA	4962(11)	-63(8)	-4510(6)	2.1(0.2)	C10B	6799(20)	4306(15)	-8694(11)	6.5(0.5)
C2A	5681(13)	-290(9)	-2788(6)	2.9(0.3)	CllB	5428(18)	3558(11)	-8081(10)	5.0(0.4)
C3A	6368(16)	-405(12)	-1831(8)	4.4(0.4)	C12B	5837(14)	3813(9)	-7127(8)	3.3(0.3)
C4A	4729(16)	-608(10)	-1200(7)	3.8(0.3)				, ,	

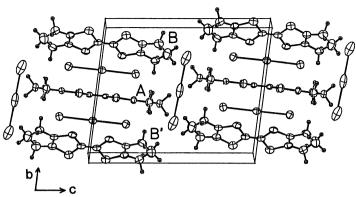


Fig. 1. ORTEP projection of the crystal structure of HMTTF⋅I₃ on the bc plane. Thermal ellipsoids for non-hydrogen atoms are at 40% probability.

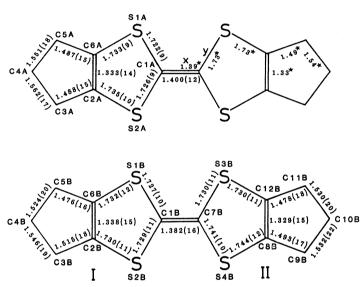


Fig. 2. Numbering system for the non-hydrogen atoms and the bond distances (Å) in the HMTTF molecules. The average distances are indicated at the right side of A with star at shoulder.

the exocyclic double bond (x) and a shortening of the contacts between the two carbon atoms involved in the exocyclic double bond and the sulfur atoms (y). It is impossible to compare the bond distances of HMTTF. I₃ with those of the neutral HMTTF molecule, for the single crystal of the HMTTF has not yet been obtained. The distances of x (1.39 Å) and y (1.73 Å) of HMTTF · I₃, however, agree with the corresponding distances of TTF \cdot I₃ (x, 1.382 (7) Å and y, 1.719 (8) Å). Molecule A is almost planar, within the deviations of 0.05 Å. In Molecule B. both rings I (S1B-C1B-S2-B-C2B-C3B-C4B-C5B-C6B) and II (S3B-C7B-S4B-C8B-C9B-C10B-C11B-C12B) are almost planar, within deviations of 0.08 Å. However, the least-square plane of Molecule B, as a whole, has a deviation of 0.31 Å (ClOB); that is, B is slightly folded (8.7°) at the central double bond (C1B-C7B). Figure 3 shows the projection along the caxis. The least-square planes of Molecules A and B have a dihedral angle of 38.0°. The enantiomers B and B' are parallel and facing to each other, with close S... S contacts of 3.355 (4) and 3.366

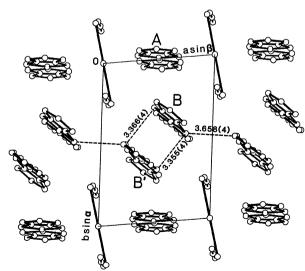


Fig. 3. Crystal structure projected along the c axis. Close intermolecular S···S contacts (Å) are indicated.

(4) Å shorter than the van der Waals distance of 3.7 Å, which may cause the foldings of Molecules B (and B') described above. A slightly close S... S contact of 3.658 (4) Å is also found between B and B' in adjacent cells, but no sufficient overlapping of π -electrons can be expected. No other close S...S contacts are found around Molecules B and B' nor around Molecule A.

The temperature dependence of the electrical resistivity along the a axis was also measured. The resistivity increases as the temperature decreases ($\rho=3.7\times10^5$ Ω cm and activation energy K=0.32 eV at 300 K);¹⁰⁾ that is, this crystal is semiconductive, which is consistent with the molecular stacking along the a axis.

References

- 1) Presented in part at the 52nd National Meeting of the Chemical Society of Japan, Kyoto, April 1986; Abstr., No.
- 2) R. L. Greene, J. J. Mayerle, R. Schumaker, G. Castro, P. M. Chaikin, S. Etemad, and S. J. LaPlaca, Solid State

Comm., 20, 943 (1976).

- 3) H. Anzai, M. Tokumoto, and G. Saito, Mol. Cryst. Liq. Cryst., 125, 385 (1985).
- 4) P. Main, S. E. Hull, L. Lessinger, G. Germain, J. P. Declercy, and M. M. Woolfson, MULTAN 78, "A System of Computer Programmes for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data," University of York, York, England (1978).
 - The positions of the hydrogen atoms were not refined.
- 6) T. Sakurai and K. Kobayashi, Rep. Inst. Phys. Chem. Res., 55, 69 (1978).
- 7) The lists of observed and calculated structure factors, the atomic parameters for the hydrogen atoms, and the anisotropic thermal parameters for the non-hydrogen atoms are deposited at the Chemical Society of Japan as Document No. 8711.
- C. K. Johnson, ORTEP II, Report ORNL-5138, Oak Ridge National Laboratory, Tennessee, USA (1976).
 9) R. C. Teitelbaum, T. J. Marks, and C. K. Johnson, J.
- Am. Chem. Soc., 102, 2986 (1980).
- 10) H. Anzai, M. Tokumoto, H. Bando, and T. Ishiguro, unpublished work.